If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x=720
We move all terms to the left:
2x^2+6x-(720)=0
a = 2; b = 6; c = -720;
Δ = b2-4ac
Δ = 62-4·2·(-720)
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{161}}{2*2}=\frac{-6-6\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{161}}{2*2}=\frac{-6+6\sqrt{161}}{4} $
| (3x+4)-11=29 | | 25x+7=−7x+3 | | 345,60p*3/1200=55,55 | | 5/3x−10=1/3x | | 10x^2-110x+280=0 | | -5b-9=5b-18 | | 6-m/3=20 | | 3x^2+12x-69=0 | | 6.5y-19=2.5(-4) | | 7=a/3-2 | | 0.75c=-18 | | -4x+6(2x+1)=46 | | X×4x=1024 | | 5Xx=135 | | 7=3u+10 | | 854.865=3.14r^2 | | 5•x=135 | | 19-7x=20.5 | | p-1092.8=127.69 | | -12x+5-8x-10=55 | | 6v−5v=1 | | 345,60*p*3/1200=55,55 | | 1.6-x=0.7 | | 2=x(40-2x) | | 6v−5v=14 | | 21=-3a+9 | | 2(x+4)-3x=5x-4 | | 10x+3(x-4)=14 | | 2(x–3)=10x–6–8x | | g–53.1=13.4 | | 20*x=552 | | 7w-13=57 |